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A new global nonlinear sensitivity analysis method is developed to investigate the 
sensitivity of solutions of mathematical models to large uncertainties in the parameters of the 
model. The method is exact for discrete models where the parameter variation is intrinsically 
two valued, and exact for continuous models where a two valued parameter variation is 
sufftcient. The analysis involves statistical characterizarions of sensitivity similar of those of a 
previous Fourier expansion method, FAST (R. 1. Cukier, C. M. Fortuin, K. E. Shuler, A. G. 
Petschek, and J. H. Schaibly, J. Chem. Phys. 59 (1973), 3873. J. H. Schaibly and K. E. 
Shuler, J. Chem. Phys. 59 (1973), 3879; R. I. Cukier, .I. H. Schaibly, and K. E. Shuler, J. 
Chem. Phys. 63 (1975), 1140). Due to the two valued parameter variation, an analysis based 
on Walsh function expansions is found to be appropriate here. 

I. INTRODUCTION 

Many complex physical phenomena are modeled by mathematical structures that 
depend on parameter values for the numerical values of the output functions (the 
solutions of the model). If these parameters are not known accurately, it is important 
to assess the effect of the parameter uncertainty on the output function values. This is 
the objective of Sensitivity Analysis. 

If the model depends on a small number of parameters, then solving the model 
repeatedly for different values of the parameters will give the desired information. 
However, for many parameter models this procedure rapidly becomes unwieldy. Also, 
it is often the case that the sensitivity to large parameter variations is required, where 
a linear sensitivity aalysis would not be appropriate. We have developed [ 1 ] a 
Sensitivity Analysis method, FAST (Fourier Amplitude Sensitivity Test), designed to 
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address the many parameter, large parameter variation problem. FAST has been 
applied to a variety of physical-chemical [l-4] models. 

In this paper, we present a new method of Sensitivity Analysis which we will refer 
to as WASP (Walsh Amplitude Sensitivity Procedure). Both FAST and WASP are 
examples of global nonlinear sensitivity analyses, in contrast to conventional 
methods, which are variants of linear analysis [5]. In a linear analysis, the measure 
of the sensitivity of a given output function, f, which depends on a set of p 
parameters, ui , U, ,..., u, = u, to the uncertainty in the ath parameter is taken to be 
proportional to af(u, . . . u,)/c%, 1 u = II’. The analysis is linear in that it represents a 
truncation of the Taylor expansion of the output in terms of the parameters at its 
linear term. Furthermore, we refer to it as local in that all the other parameters are 
set to their nominal value ug = U; for p f a, b = 1, 2,..., p. By definition, the linear 
local analysis breaks down as the higher order terms in the Taylor expansion of the 
output function become important relative to the linear term. What is then required is 
a method that permits large parameter variations and does so in a way that, when the 
sensitivity of the output to the ath parameter is being investigated, all the other 
parameters are allowed to vary. This latter feature will reveal the effects on the output 
that arise from simultaneous excursions of a set of the parameters from their nominal 
values. 

FAST is a global, nonlinear Sensitivity Analysis. In FAST, each parameter is 
described by a probability distribution chosen to characterize one’s knowledge about 
the parameter. Averages of functions of the output function over the joint parameter 
space distribution are defined and statistical characterizations of the sensitivity of the 
output to uncertainties in each parameter are constructed. We relate the probability 
distribution function of each parameter to a frequency and a search parameter s 
which, as s varies, carries all the parameters through their ranges of variation. The 
output, as a function of s, is periodic and therefore can be Fourier analyzed. The 
Fourier coefficients of the output function are then related to the statistical charac- 
terizations of the sensitivity. An example of such a statistical sensitivity coefficient is 
a reduced partial variance S,, which gives the effect on the output function of the 
uncertainty in the ath parameter, averaged over the joint probability distribution 
function of all the remaining parameters. The S,, a = 1, 2,..., p, can be ordered to 
compare the importance of the p parameters on a given output function. We refer the 
reader to the review article [2] for a detailed account of FAST and the aims and 
objectives of Sensitivity Analysis. 

Often, it will suffke to carry out a simple, but still global and nonlinear Sensitivity 
Analysis. What is desired is a parameter probability distribution which just consists 
of two possible values, a minimum and a maximum value. In addition, there are 
discrete models where this bivariate parameter variation is natural. While one can 
construct a FAST method with a parameter probability distribution function which 
approaches, as a limit, a bivariate, equally weighted distribution, it is more advan- 
tageous to reformulate the entire analysis to reflect this discrete bivariate problem. 
The natural orthogonal functions here are not the Fourier, but the Walsh functions 
[6]. Walsh functions are orthogonal step functions which form a complete set. (An 



GLOBAL NONLINEAR SENSITIVITY ANALYSIS 429 

example of a set of them appears in Fig. 1.) Their two-valuedness make them an ideal 
choice for this problem. 

The Walsh sensitivity analysis that we construct here is modeled along the lines of 
FAST in that the same statistical characterizations of the sensitivity are used. The 
result is still a global, nonlinear analysis. It has certain advantages with regard to 
FAST. For discrete models, where the parameter distribution is actually just two 
valued it is exact. That is, the expressions we obtain for the statistical sensitivity 
measures are exact. For continuous models, if one is willing to choose just a two 
valued parameter variation, then the sensitivity measures are still exact. By contrast, 
FAST is an approximate method, and while the approximations are controllable and 
have been carefully investigated [ 1, 21, FAST does require more “skill” for its proper 
use. 

The remainder of this paper is organized as follows. In Section II the Walsh 
functions are introduced and their properties catalogued. While these results are 
available in the literature [ 61, it is convenient to collect them here. Furthermore, the 
manipulations of the Walsh functions that we use are required for the Sensitivity 
Analysis. In Section III we derive the WASP method by following a procedure 
similar to that used in the derivation of FAST. An example of the use of WASP, 
along with a comparison of it to linear analysis and to FAST is presented in 
Section IV. The merits of WASP and its future use are discussed in Section V. 

II. HADAMARD ORDERED WALSH FUNCTIONS 

A Walsh function is defined in terms of two arguments, a timelike variable [7] and 
a sequency variable, the latter analogous to frequency in Fourier analysis. The Walsh 
functions form a complete orthogonal set of step functions. For our Sensitivity 
Analysis, it is convenient to use the Hadamard ordered Walsh functions defined by 

O<f<l; w = 0, l,..., M - 1 ; M= 24; q = 1, 2,... . o-1 ) 

0.00 0.25 0.50 0.75 
-- 

1.00 

FIG. 1. The four Hadamard ordered Walsh functions for q = 2. 
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Here, the sequency variable w is represented in binary as (w,, We,..., w4) and the 
timelike variable t as (t,, t, ,..., tq). The sequency is an integer less than 2q so it can be 
represented by a q digit binary number with the binary point to the right of w,. The 
timelike variable is continuous on [0, 1) but Eq. (2.1) only defines walh(w, t) for 
t=j/M,j=O,l,.,., M - 1 [8]. For each value of q, a different set Q of M = 2q Walsh 
functions is generated by Eq. (2.1). This set, for q = 2, is displayed in Fig. 1. 

We now list properties [6] of these sets which we will use in the Sensitivity 
Analysis. 

1. Multiplication. 

walh(n, t) walh(m, t) = walh(n @ m, t)n, m E Q, (2.2) 

where n @ m refers to binary addition without carry, i.e., 0 @ 0 = 1 @ 1 = 0, 1 @ 0 = 
O@ 1 = 1. Thus, 

walh(n, t) walh(m, t) = (-l)z!= [nili (-1)x?= I mifi = (-1)x8 I (nit mi)fi 

= (-I)~?- I (ni%lmi)fi = walh(n @ m, t). (2.3) 

2. Group property [6]. If n, m E Q, then n 0 m E Q. 
A multiplication table for the q = 2 set is given in Table I. (It is instructive to 

compare Fig. 1 with Table I.) 

TABLE I 

Multiplication Table for the q = 2 Walsh Functions 

walh(O, I) walh( 1. t) walh(2, t) walh(3, I) 
- 

walh(O, I) 
walh( 1, I) 
walh(2, t) 
walh(3, t) 

walh(O, t) 
walh( 1, t) 
walh(2, t) 
walh(3, t) 

walh( 1, f) 
walh(O, t) 
walh(3, t) 
walh(2, t) 

walh(2, I) 
walh(3, t) 
walh(O, t) 
wahl( I, t) 

walh(3.1) 
walh(2, f) 

walh( 1, I) 
walh(O, f) 

3. Scalar product. A scalar product for functions in Q is defined as 

(A(t) B(t)) = 1’ dtA(t) B(t) = $ “c’ A(t) B(t) 
0 f-0 

=; ,i go *** f~o~w~t)~ 
(2.4) 

I u 

where we note again that t = j/M, j = 0, ,l,..., M - 1, and that t = (t,, t, ,..., tq). 
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4. Orthogonality. 

(walh(n, t) walh(m, I))=; $ i . . . ,i,, (-l)‘l=l~iri(-l)‘B-lmiri 
11-o fz-0 q 

=~jI(l+(-l)~j+m’)=iT6ni,n,=6,,. 

(2.5) 

I-I i=l 

5. Completeness 19 1. From the completeness and orthogonality properties we 
know that an absolutely integrable function [lo] f(t) can be expanded in a Walsh 
series as 

f(t) = c c, walh(n, t) 
n=o 

(2.6) 

and approximated as 

M- I 

f(t) z \' 

EO 

c, walh(n, t) (A4 = 29) (2.7) 

by uniform convergence. 
The error term is governed by the behavior of the c,. As shown by Fine [ 111 

c, - l/n. The coefficients c, are given by 

c, = (f(t) walh(n, t)), (2.8) 

using the orthogonality property. 
The above results are used in the following section to construct a Walsh Sensitivity 

Analysis. 

III. WALSH SENSITIVITY ANALYSIS 

We assume that a mathematical model of the physical system has been constructed 
and that the model can be solved to yield an output function f 

f=f(u; r>. (3.1) 

The output function depends on a set of p parameters u = u,, q,..., u, which, for a 
given run (solution) of the model, are fixed. The model may also depend on variables 
7 = r1 ,..., rk which vary during the model run. For example, r could represent the time 
in the solution of a physico-chemical model of a coupled hydrodynamic-chemical 
reaction process. In this example, ,the u could correspond to the rate and transport 
coefficients which are the parameters of the model. 

To investigate the global sensitivity of the output to the parameters, we first 
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introduce a transformation function gi which relates the possible parameter values to 
another variable ti as 

ui = gi(ti), i = 1, 2,. .., p. (3.2) 

As ti is varied, ui is driven over its appropriate range of variation. In accordance with 
the aim of this analysis, gi will be chosen to give just two values for each ui. 
Expressingf(u), the output function, in terms of t by using Eq. (3.2), and expanding 
f(t) [ 121 in a p-dimensional Walsh series, we have 

j-(t) = IpI ‘y c, walh(wY) 
a=, w*-0 

c, = & I:] ‘{“f(t) walh(wata). 
a-l r=o 

(3.3a) 

(3.3b) 

In Eq. (3.3) we have used the notation wa and ta to denote the sequency and timelike 
variables associated with the ath parameter, a = 1, 2,..., p. Each sequency runs over 
w==o 1 M - 1 with M = 2q and t” = j/M, j = 0, l,..., M - 1, as in Section II. 
Since dnli’;wo values are required for each parameter, we use ta = 0, 1 for each a. 
That is, M = 2 and Eqs. (3.3) are 

I 

f(t) = [‘I x c, walh(wata) 
a=1 we=0 

c, = & I:] 4. f(t) walh(wat”). 
a-l I=0 

Only one binary digit is required to represent any walh(wOta) for a Q = 1 Walsh 
group. Therefore, t” has the binary representation (t,), where t, = 0, 1, and 
walh(wnta) = (-l)“‘e’a. Note that 

walh(wata) = r\ (- l)wefm = walh( W, 7’) 
a=1 

(3.5) 

where W and T are, respectively, the sequency and timelike variables for the p digit 
binary numbers (w,, . . . w,) and (fP . . . ti) defined as 

and 

w=w 
P 

2P-‘fw _ 2p-2+ .*. +w,2O 
P i 

(3.6a) 

T=rp2P-1+tp--12P-‘+ .a. +?,2’. (3.6b) 
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Thus, Eq. (3.4) can be expressed as the one-dimensional Walsh transform pair 

N-l 

f(r> = 2 c, walh(K T) 

w=o 

and 

c, = -& ‘yy’ f(T) walh( IV, T) 
T:O 

(3.7a) 

(3.7b) 

by using Eq. (3.6) and defining N = 2p [ 131. 
The requirement of a Sensitivity Analysis is that each parameter variation shows 

up uniquely in the output function. Specifically, we require that if we assign a unique 
sequency to each parameter, then, in the Walsh spectrum of the output, a non-zero 
Walsh coefficient at a given parameter’s sequency indicates a sensitivity to that 
particular parameter, and no other. To effect this condition we choose the set of p 
sequencies, one for each parameter, according to 

where b, = 0 or 1. Thus, the W=‘s are “binary incommensurate.” For example, for 
three parameters, p = 3, take W, = 1, W, = 2 and W, = 4. Then Eq. (3.8) is satisfied 
since w, = 001, w, = 010, w, = 100, W,@ W*=Oll, w, @I w, = 101, 
W, @ W, = 110 and W, @ W, 0 W, = 111; the sequencies are 1, 2, 4, 3, 5, 6 and 7, 
respectively. The multiplication and group properties noted in Section II show that, in 
general, the choice of parameter sequencies 

w, = 2”, a = 0, l)...) p - 1, (3.9) 

ensures that Eq. (3.8) the binary incommensurate condition, is satisfied. With this 
choice of sequencies, the transformation function is given as 

u, = g,(i,) = 2:’ + d, walh(2”, t, 2”), (3.10) 

where I, = 0, 1 and u:’ is the median value of u,. Since walh(2”, t, 2”) = (-l)‘e for 
t, = 0, 1, one obtains 

u, = u:’ i A,, (3.11) 

with the + sign for t, = 0 and the - sign for t, = 1. Thus, the choice of the transfor- 
mation function given in Eq. (3.10) generates two values of each parameter. 
Furthermore, it does so with equal probability since any Walsh function is either f 1 
with equal weight as f ranges on [0, 1). 

In summary, the transformation function of Eq. (3.10) with the parameter 
sequencies of Eq. (3.9) yields two equally weighted values of each parameter and 
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each sequency provides a unique label for its assigned parameter. By examining the 
one-dimensional Walsh spectrum of the output function, cf. Eq. (3.7), the sensitivity 
of the output function to each parameter can be assessed. 

It now remains to provide convenient and useful measures of this sensitivity for the 
Walsh analysis. We shall now show that the sensitivity measures used in the Fourier 
Sensitivity Analysis [ 1, 21 are also appropriate here. The scalar product defined in 
Eq. (2.4) is equivalent to an average over the p-dimensional parameter space 
probability distribution function when the transformation function of Eq. (3.10) is 
used, since, for some function H of the output f, 

(3.12) 

That is, Eq. (3.12) sums over the two parameter values given by t, = 0, 1 via 
Eq. (3.10) for each parameter a = 1, 2 ,..., p, and the weight of each parameter value 
is f . Expanding fin a p-dimensional Walsh series yields 

(3.13) 

since 

i walh(wnta) = 1 + (-1)“‘” = 26,,,, (Wa = 0, 1), (3.14) 

as in the derivation of Eq. (2.5). Thus, the average value (over the parameter space 
distribution function) of the output function is its c0 Walsh coefficient. Also, by 
noting the correspondence of the p-dimensional Walsh transform of Eq. (3.4) (for 
M = 2) with the one-dimensional Walsh transform of Eq. (3.7), one has that 

We calculate the average off * by expanding f in a Walsh series, both the p- and one- 
dimensional forms, and using the orthogonality relation of Eq. (2.5) and obtain 

(3.16) 

Thus, the total variance crf off induced by the simultaneous variation of all the 
parameters is 

(3.17) 
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where the ’ on the sum excludes the c,, Walsh coefficient. This result is the analogue 
of Parseval’s theorem of Fourier analysis. 

Partial variances are constructed by averaging the output function f over all but 
one parameter, say the Iirst parameter, and then calculating the variance of the result 
f*(u,) with respect to the first parameter. Averaging f over u2 ..- up by Walsh 
expansion yields 

walh(w”t’l) = c,~. .w, walh(w’t’). (3.18) 

The partial variance with respect to parameter one is 

0: = ((f*>‘) - (f *>* = CL.. , = 4, (3.19) 

where we have noted that (f*) = (f) = c6. This result holds for any parameter, and 
we define the reduced partial variance S, with respect to parameter a as 

s, = c f,/u f = a;/a:, a = 1, 2 ,... , p. (3.20) 

These partial variances are a measure of the effect that variations in a given 
parameter have on the output function which takes into account the simultaneous 
variation of all the other parameters, in an averaged sense. The S, can be ordered to 
reflect the relative importance that the parameters have on a given output function. 

In a similar fashion, coupled partial variances can be constructed which are formed 
from the Walsh coefficients whose sequency is that of the desired sequencies 
(parameters) added together (by binary addition without carry). Here we first average 
the output over all the parameters except those for the desired set, and then construct 
the variance with respect to this remaining set. For example, one obtains the reduced 
coupled partial variance for parameters a and j3 as 

(3.2 1) 

This result is obtained by a simple generalization of the procedure leading to 
Eq. (3.19). The coupled partial variances are a measure of the combined effect on the 
output of variations in a set of parameters (a and /I in Eq. (3.21)) averaged over the 
simultaneous variation of all the other parameters. 

The sensitivity measures given above may be related to averages of the central 
difference formula for derivatives of a function. This connection is discussed in the 
Appendix. 

The procedure for a Walsh Sensitivity Analysis is as follows. For a p parameter 
problem assign a sequency W, to each of the parameters according to Eq. (3.9). Set 
U(O) and A, of Eqs. (3.10) and (3.11) to obtain the desired two values for each 
plrameter. Write the output function in terms of the search variable t = T by use of 
Eq. (3.10) and evaluate its Walsh coefficients via Eq. (3.7b). From this set of N 
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Walsh coefficients construct the desired measures of sensitivity given by Eqs. (3.17) 
(3.20) and (3.21). 

In the next section, an example of Walsh Sensitivity Analysis is given to illustrate 
the use and power of this method. 

IV. AN EXAMPLE 

In this section we present a simple example of Walsh Sensitivity Analysis to 
illustrate its use. Also, we compare it to linear Sensitivity Analysis and to the existing 
Fourier Sensitivity Analysis [ 1, 21. 

A simple, but very common, nonlinear model output function is the exponential 

f(u,, 24,; t) = u2eUtT. 

The parameters are U, and u2 and the variable is t. A linear Sensitivity Analysis is 
obtained by truncating the Taylor expansion 

f =f(uy, ui; 5) + e+(u, - ui) + u~te+(ul - uy) 

+ te+(u2 - ui)(u, - uy) + u~52eu~T(u1 - u7)‘/2 + ..., (4.1) 

at the first derivative terms. Define a linear Sensitivity Analysis coefficient X, for 
parameter a as 

(4.2) 

For the above example, 

X, = 24; 24: re+, (4.3a) 

X 
2 

= u”euY7 
2 . (4.3b) 

The linear sensitivity coefficients are plotted in Fig. 2 with U: = -0.25 and U: = 1000 
as the nominal values. From this linear analysis, one concludes that the sensitivity to 
U, is highest at small r, while that of U, peaks at U, N 4. 

To perform a Walsh Sensitivity Analysis, a range of parameter variation is 
required. First, let us examine the “local behavior” of the model by choosing a small 
variation of parameters (the A, of Eq. (3.10)). In this case, the Walsh analysis should 
verify the linear analysis. Consider a 10% variation in both parameters, i.e., 
U, = -0.25 f 0.025 and u2 = 1000 f 100. In Fig. 3, the average behavior of the 
output is plotted. The average is the normalized sum of the four simulations 
corresponding to the four possible combinations of parameter values. It is just the co 
Walsh coefficient defined in Section III. The Walsh coefficients c, and c, are plotted 
in Fig. 4. As shown in the Appendix, cI(cz) is the finite difference approximation to 
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FIG. 2. Linear sensitivity coefficients defined in Eqs. (4.2) and (4.3) for the exponential model. 

Tome (secl 

FIG. 3. Average value of the output for WASP, the C, Walsh coeffkient; 10% variation case. 

FIG. 4. The Walsh coefficients C, and C,; 10% variation case. 
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FIG. 5. The Walsh reduced partial variances S, and S, defined in Eq. (3.20); 10% variation case. 

the first derivative of the output function with respect to parameter one (two) 
averaged over the probability distribution of the second (first) parameter. Comparing 
Fig. 2 with Fig. 4, we see that the sensitivities are the same to within a trivial scale 
factor, which is dependent on the transformation function g,(t,). For ordering 
purposes it is convenient to display the reduced partial variances, S, and S,, as 
defined in Eq. (3.20). This plot, Fig. 5, shows that the sensitivity to u,, as measured 
by S,, is increasing with r in contrast to the peak behavior displayed by X, and cr. 
This occurs because the standard deviation (square root of the total variance err 
defined in Eq. (3.17)) which appears as the denominator of S, and S,, is decaying 
with r, which reflects the decay of the individual simulations. Another feature 
displayed in Fig. 5 is the lack of coupling between the parameters, as is clear from 
noting that S,(r) + S,(r) - 1. Thus, almost all the variance in the output function is 
assigned to S, or S,. It is also instructive to plot the relative deviation, which is the 
standard deviation divided by the averaged output. As Fig. 6 shows, the sensitivity to 
the parameters can be large when measured relative to the actual simulation values 
which, in this case, are becoming small for large t. 

0.00 +--~--T-. -~ -i- ~~~_ _ &QcJcj 

0.0 5.0 10.0 15.0 20.0 

Time (se-z) 

FIG. 6. Relative deviation (standard deviation/average); 10% variation case. 
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i 
,’ 

FIG. 7. The Walsh reduced partial variances; 60% variation case. 

The linear or small parameter variation Walsh Sensitivity Analysis is appropriate 
when the output is well represented by the first derivative term of its Taylor 
expansion. To investigate the sensitivity properly, we must allow for a wider range of 
parameter variation. This is readily done in the Walsh analysis by increasing the 
value of A, and A,. Increasing the range of variation to 60% (from the 10% variation 
just explored) leads to the results summarized in Fig. 7. The changes from the linear 
and small variation Walsh analyses are evident. They reflect the effect of the 
nonlinear terms in the Taylor expansion of the output. Note that now a coupling 
between the parameters exists since, as r increases, S,(r) + S,(7) N 0.8. A larger 
variation of parameters would produce a greater difference with respect to the linear 
and small variation Walsh analyses. 

If the parameter variation is increased to lOO%, i.e., U, = -0.25 f 0.25, u2 = 
1000 f 1000, the character of the analysis changes to one of Structural Analysis as 
opposed to Sensitivity Analysis. By the term Structural Analysis we refer to changes 
in the model specification; here, by eliminating parameters completely. In the above 
example, two of the output functions are zero for all 7 (u, = 0), and one is a non-zero 
constant (ui = 0). We present the results of this analysis in Fig. 8. There are drastic 

00 50 100 150 200 
1001, 1 ~ 100 

e .* 
E 
0 075 .* r 075 

B 

P 
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050 lo50 
. . . .% 

?i : f . .---. . . . - . 
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.' rO25 

B ,' 
000 /:- ~.~~---T~ . ~~1.~-~-~.-~~7.. ~_ --: 0.00 00 5,0 10.0 150 2oo 

Ttme (WC) 

FIG. 8. The Walsh reduced partial variances; 100% variation case. 
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FIG. 9. The Fourier (FAST) reduced partial, and coupled partial variances (cf., Eq. (3.21)); 100% 
variation case. 

differences with regard to the other cases treated. The average value does not decay 
to zero, and the reduced partial variances are totally different for large t. The 
conclusion then is that Walsh analysis must be done with care to ensure that a 
Sensitivity Analysis as opposed to a Structural Analysis is being performed. Of 
course, the Walsh theory presented here is ideally suited to Structural Analysis. 

We can compare the above three cases of small (essentially linear), medium and 
large parameter variations, with the results of FAST for these three cases. In FAST, 
the parameter variation is not two valued, it is obtained from a probability 
distribution which weights the nominal values also. The transformation function used 
in these FAST simulations is log-uniform (the probability distribution function of the 
logarithm of each parameter is uniform between finite limits and zero otherwise). For 
the small parameter variation case, the Fourier Sensitivity Analysis yields essentially 
the same results as the linear and small variation Walsh Sensitivity Analysis. The 
medium variation case also reproduces the Walsh analysis. For the large variation 
case, Fig. 9 shows that a Sensitivity, not Structural, Analysis is being done. The plots 
reveal the increasing influence of the nonlinear terms in the Taylor expansion of the 
output function on the sensitivity coefficients. At large r the reduced partial 
variances, S, and S,, and coupled partial variance S,,, sum to -0.8. This indicates 
even greater coupling among the parameters than in the medium variation case, and 
is in great contrast to the lack of coupling displayed by the linear and small variation 
Walsh analyses. 

V. DISCUSSION 

When it is sufficient to carry out a Sensitivity Analysis where each parameter takes 
on only two values, then the Walsh analysis developed here will be appropriate. The 
parameter range can be adjusted, for each parameter, to reflect ones knowledge (or 
lack thereof) about each parameter’s possible values. The use of extreme values, a 
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minimum and maximum, may be thought of as providing an upper limit on the 
model’s sensitivity, with respect to other choices of parameter distribution functions. 

WASP has the virtue of being an exact global nonlinear Sensitivity Analysis for 
models where two valued parameter distributions are appropriate. The expressions for 
the total, reduced partial and reduced coupled variances given in Eqs. (3.17), (3.20) 
and (3.21), respectively, are exact. By contrast, the analogous expressions in FAST 
[ 1,2] are approximate. The number of simulations required for a Sensitivity Analysis 
of a given accuracy increases for an increase in accuracy. Since the computational 
expense is determined by the number of required simulations, a compromise between 
accuracy and cost is involved. This issue does not arise in WASP since the number of 
simulations N is simply related to the number of parameters p as N= 2p. 

We have not discussed the implementation of WASP so far [4]. It is quite 
straightforward. All that is required is a method to calculate Walsh coefficients of a 
given output function. FAST Walsh transform codes exist (analogous to FAST 
Fourier transform codes), which require N log, N operations. Thus, in almost all 
cases, the limiting factor in WASP is the time required to run one simulation of the 
model, not the Walsh transform of the N output functions. 

The WASP example of Section IV with the large parameter variation illustrates the 
possibility of using WASP as a Structural Analysis method. If we consider a 
bivariate parameter distribution with values zero or one, the either a given parameter 
is missing from the model, or it is present. WASP then provides a method of 
assessing the sensitivity of a model to changes in its structure. This important 
possibility for WASP is currently being explored. 

APPENDIX 

In this Appendix we relate WASP to averaged central difference approximations of 
derivatives of the output function. 

A two parameter example will illustrate the connection between Walsh coefficients 
and central difference approximations. There are 4 = 22 Walsh coefficients c,, Cl 3 c2 

and cj. Reference to Eq. (3.7) shows that the c2’s are generated from the four output 
functions as 

(A-1) 

where the J;: denote the four values of the output function f, = f(OO), f, =f(Ol), 
fi=f(lO) and f, =f(ll). From Eq. (A.l), 

c =’ fo-f, +frf, 
1 2 2 ------’ [ 2 1 64.2) 
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which is the average over the second parameter of the two central difference approx- 
imations to the first derivative with respect to the first parameter. That is, if 

4 f(Ou2) - f(lu2) - = 
AU 1 ut 2 ’ 

then 

Af c,=f$,= - . ( ) 4 2 

64.3) 

By a similar argument, c2 is the averaged (over parameter one) central difference 
approximation to the first derivative off with respect to u2. Also, cj = c,, , from 
Eq. (A.l), is given by 

” = Au, Au, * 

The general result is given by the succession of relations 

co...1 e***o= 

co . . . . ~ . . . . D...o- - (Au?& ),a,b’ 
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